Перевірка на нормальність розподілу вибіркової сукупності
1. Запропонуйте й опишіть приклад досліджень шляхом проведення експериментів, спостережень або вимірювань.
. Складіть статистичну вибірку для перевірки на нормальність розподілу будь-якого техніко-економічного показника діяльності організації (підприємства, виробничого підрозділу, механізму тощо). Обсяг статистичної вибірки - не менш 40 спостережень (вимірювань).
. Викладіть методику перевірки статистичної вибірки на розподіл за нормальним законом.
. Здійсніть перевірку складеної вибірки за поз. 2 на нормальність розподілу.
. Сформулюйте висновок стосовно одержаного результату перевірки.
Виконання завдання:
Досліджується попит одягу в мережі супермаркетів, що має достатній обсяг спостережень, але розподіл випадкової величини є невідомим. Необхідно перевірити вибірку на нормальність розподілу.
. Впорядкуємо розміщення даних у зростаючому порядку за допомогою програми Майстер функцій (п. 2).
3. Методика складається з наступних етапів:
а) вибірку розбивають на рівні інтервали, величина яких визначається за виразом:
h =, (2.1)
де Х- максимальне значення вибірки;
Х- мінімальне значення вибірки; - число спостережень.
Нижньою границею початкового інтервалу буде мінімальне значення вибірки, верхньою - мінімальне, збільшене на величину (крок) інтервалу. Останнє, в свою чергу, буде нижньою границею наступного інтервалу, а верхня - визначатиметься кроком інтервалу. Останній інтервал має вміщувати максимальне значення вибіркової сукупності даних.
б) за кожним інтервалом знаходять його середнє значення як суму верхньої та нижньої границь відповідного інтервалу, поділену навпіл. Виділивши поле, що дорівнює числу інтервалів, та скориставшись командою Вставка / Функция / Статистические / Частота вбудованих функцій Еxcel знаходять частоту появи значень кожного інтервалу m, зазначивши у діалоговому вікні ‚‚ Аргументы функции ’’ у полі ‚‚Массив данных’’ массив даних вибірки, а у полі ‚‚Массив интервалов’’ - верхні границі інтервалів сукупності даних. Для виконання команди одночасно натискають клавіши <Ctrl> + <Shift> + <Enter>.
в)
розраховують середнє значення всієї сукупності даних x та її середньоквадратичне відхилення δ за допомогою команд, відповідно, Вставка / Функция / Статистические / СРЗНАЧ та Вставка / Функція / Статистические / СТАНДОТКЛП, де у полі діалогових вікон програми зазначають весь діапазон даних вибірки;
г) для кожного інтервалу значень визначають теоретичну (вирівнюючу) частоту за виразом:
=, (2.2)
де φ(t) - табличне значення функції φ(x)= вірогідності появи теоретичного значення вибірки (середнього значення і - го інтервалу).
Параметр t як кількісне вираження вірогідності появи середнього значен-ня xвиділеного і - го інтервалу визначають за формулою:
= . (2.3)
д) встановлюють відносні емпіричні частості за виразом:
′ =, (2.4)
де m′- емпірична частота і - го інтервалу; - число спостережень;
е) визначимо відносні теоретичні частості за виразом: